

CCMC: A Code Provider's View

Tamas Gombosi University of Michigan

UNIVERSITY of MICHIGAN ■ COLLEGE of ENGINEERING

What Does it Take to Develop a Major Code?

	SWMF/BATS-R-US	Cassini MIMI		
Years of development	7 (from concept to HP code) + 7 (full development)	7 (pre-selection) + 7 (development)		
Years of Science Apps	10	9		
Development cost	~\$20M	~\$30M		
Science operations/ applications cost	~\$10M	~\$10M		
Application areas	Sun, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Io, Europa, Enceladus, Titan, 10+ comets, Outer Heliosphere, Extra-solar star- planet interaction	Solar wind, Solar Energetic Particles, Jupiter, Saturn, Enceladus, Rhea, Dione, Titan, Outer Heliosphere		
"Mass"	~400,000 lines of code	16 kg		
Unit cost	~\$50/line	~\$1,875/g		
Funding Agencies	NASA, NSF, DoD, DoE	NASA		

Developing/maintaining a major simulation code takes very similar resources than developing/operating a major space instrument.

Code Developer's Paranoia

- I am not getting any funding to support CCMC and its learning curve...
- My competitors will never give their code to CCMC, so why would I?
- Source code is like technology and my code is better, so why would I give up the source code?
- My code is my livelihood, what will I do if I lose control over its usage?
- Those guys at CCMC do not understand the sensitivities of the code and they will misuse it...
 - Run with inconsistent control/input parameters...
 - Will misinterpret the result...
 - I will be blamed for the stupid mistakes of others...
- ...any other reason you can think of

Paranoia vs. Reality

- No code was stolen or "mined"
- * CCMC acted professionally and responsively with all codes
 - They did not publicly endorse or criticize any code
 - They quietly worked out all the issues with the code developers
 - There was no code or proprietary information leakage
 - CCMC tried to minimize the developers support time
- The broader community actually used the codes at CCMC and some good science was accomplished
 - All codes were misused by some users and the sky did not fall
 - All codes were properly used by many users and everybody benefited
- Students took advantage of code availability
 - Several dissertations/class projects were based on CCMC runs
 - The next generation of space scientists is trained to use large simulation codes responsibly
- Overall, CCMC is a win-win for the community and the code developers

Emerging Community View

- Global simulations are useful community tools
 - They capture the big picture
 - They help to guide data analysis/interpretation
 - More than one code is needed for each simulation domain
 - Physics limitations/missing physics must be recognized and taken into account
 - ★ Do not over-interpret results
- Global simulation tools must be maintained and improved
 - Add better physics
 - Development should be only funded if it addresses well documented needs
 - Relevant new results must come during the development starting from the early stages
- * Try to share the cost with other agencies

How Many Codes are Needed?

- There is no single answer
- Possible analogies (none is really good)
 - DoE has 3 major weapons labs
 - There are ~25 major Earth System models in the IPCC analysis
 - ★ Leading US models are at NOAA GFDL, NOAA NCEP, NCAR, DoE
 - None of these have major university participation. Is this the nature of high end models, or is this a consequence of "not invented here" syndrome?
- My personal guess: At least 2, but not more than 5.
 - Answer is somewhat simulation region dependent
 - Solar/heliosphere: from the tachocline to 10 AU
 - Magnetosphere/ionosphere/atmosphere: from GICs to the bow shock
 - Today we have components, but no complete model systems
- ★ Annual cost of supporting these efforts would be ~\$10M
 - Where will the money come from?
 - How can new groups break into the system, or old groups gracefully wind down?

Modelers of the World, Unite!

- The winds are shifting and modeling is becoming mainstream
- Code wars are not useful for anyone
 - Everyone understands that no code is perfect
 - ★ All codes have advantages and disadvantages
 - * For sanity check we need at least two codes for each problem
 - ★ Ensemble simulations are an important part of uncertainty quantifications that is needed for progress
 - Instead of criticizing each other we should focus on the positive
 - ★ Global models are becoming important tools of space space physics
 - * Emphasize the new physics and improved understand your simulation enables
- Remember, we want to expand the pie by \$10M/year and not redistribute the morsels
- With a united front we can expect much more support from the community
 - ... but we need to SERVE them and listen to the needs of the community
 - CCMC is a critical link in this process

Model Use at CCMC

Solar Corona		Inner Heliosphere		Global Magnetosphere		Inner Magnetosphere		Ionosphere & Thermosphere	
ANMHD	6	MAS+ENLIL	488	BATS-R-US	1123	Fock RC	290	AbbyNormal	27
MAS	62	WSA+ENLIL	868	BATS-R-US+RCM	503			CTIP	368
PFSS	155	EXO	25	GUMICS	39			SAMI 2/3	135
SWMF	44	IPS/SMEI	61	LFM	83			TIE-GCM	66
WSA	50	SWMF	43	OPEN GGCM	512			USU-GAIM	169
Total	272	Total	1485	Total	2260	Total	290	Total	765

- SC models are least used
 - Too much missing physics
 - Difficult to simulate eruptions
- ENLIL dominates IH simulations
- GM is the most widely used model element
 - Most runs are made with SWMF and OPEN-GGCM
- IT simulations are split between CTIP, USU-GAIM and SAMI 2/3

What is Needed in Global MHD

- None of the model runs are grid converged
 - Grid convergence studies should be carried out
 - As a minimum we should understand the issues
- Reconnection should be handled better
 - In ideal MHD we need to develop estimates for reconnection rates due to numerical resistivity
 - Resistive (including anomalous resistivity) effects need to better understood
 - Need good algorithms to find reconnection sites in 3D
 - Use 2 fluid Hall MHD, that is the lowest-order self consistent fluid approximation that can describe physical reconnection
 - Use appropriate resolution so that physical reconnection dominates
- Multifluid, anisotropic pressure, drift physics improvements

Multi-Ion, Two-Fluid Hall MHD

- Lowest order self-consistent set of MHD equations beyond ideal MHD
- * Accounts for electron-ion velocity difference
- Physical description of reconnection

$$\frac{D\rho_{i}}{Dt} + \rho_{i}(\nabla \cdot \mathbf{u}_{i}) = \dot{\rho}_{i}$$

$$\rho_{i} \frac{D\mathbf{u}_{i}}{Dt} + \nabla p_{i} - en_{e}[\mathbf{E} + \mathbf{u}_{+} \times \mathbf{B}] = \rho_{i}\mathbf{g} + \rho_{i}\dot{\mathbf{u}}_{i}$$

$$\frac{Dp_{i}}{Dt} + \frac{5}{3}p_{i}(\nabla \cdot \mathbf{u}_{i}) + \frac{2}{3}(\nabla \cdot \mathbf{h}_{i}) = \dot{p}_{i}$$

$$\frac{Dp_{e}}{Dt} + \frac{5}{3}p_{e}(\nabla \cdot \mathbf{u}_{e}) + \frac{2}{3}(\nabla \cdot \mathbf{h}_{e}) = \dot{p}_{e}$$

$$n_{e} = \sum_{\alpha = ions} Z_{\alpha} n_{\alpha} \qquad \rho_{i} = \sum_{\alpha = ions} m_{i} n_{i}$$

$$\mathbf{u}_{e} = \mathbf{u}_{+} - \frac{\mathbf{j}}{e n_{e}}$$

$$\mathbf{u}_{+} = \sum_{\alpha = ions} \frac{Z_{\alpha} n_{\alpha}}{n_{e}} \mathbf{u}_{\alpha}$$

$$\mathbf{E} = -\mathbf{u}_{+} \times \mathbf{B} - \frac{1}{e n_{e}} \mathbf{j} \times \mathbf{B} + \eta_{e} \mathbf{j}$$

$$\mu_{0} \mathbf{j} = \nabla \times \mathbf{B}$$

 $\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{B}$

Multifluid Anisotropic MHD

Ion continuity equation: $\frac{D\rho_{\alpha}}{D_{\alpha}} + \rho_{\alpha} (\nabla \cdot \mathbf{u}_{\alpha}) = \dot{\rho}_{\alpha}$

Ion momentum equation:

$$\mathbf{w}_{\alpha} = \mathbf{u}_{\alpha} - \sum_{s=ions} \frac{Z_{s} n_{s}}{n_{e}} \mathbf{u}_{s}$$
 gyration around bulk velocity of positive charges

charge density weighted ambipolar & Lorentz force

$$\rho_{\alpha} \frac{\partial \mathbf{u}_{\alpha}}{\partial t} + \rho_{\alpha} (\mathbf{u}_{\alpha} \cdot \nabla) \mathbf{u}_{\alpha} + \nabla p_{\alpha_{\perp}} - eZ_{\alpha} n_{\alpha} \mathbf{w}_{\alpha} \times \mathbf{B} + \frac{Z_{\alpha} n_{\alpha}}{n_{e}} (\nabla p_{e_{\perp}} - \mathbf{j} \times \mathbf{B}) =$$
perpendicular pressure

$$\rho_{\alpha}\dot{\mathbf{u}}_{\alpha} + \rho_{\alpha}\mathbf{g} + eZ_{\alpha}n_{\alpha}\eta_{e}\mathbf{j} - B\nabla_{\parallel}\left[\left(\frac{p_{\alpha_{\parallel}} - p_{\alpha_{\perp}}}{B} + \frac{Z_{\alpha}n_{\alpha}}{n_{e}}\frac{p_{e_{\parallel}} - p_{e_{\perp}}}{B}\right)\mathbf{b}\right]$$

Ion energy equations:

adiabatic focusing

$$\frac{\partial p_{\alpha_{\parallel}}}{\partial t} + (\mathbf{u}_{\alpha} \cdot \nabla) p_{\alpha_{\parallel}} + p_{\alpha_{\parallel}} (\nabla \cdot \mathbf{u}_{\alpha}) + 2 p_{\alpha_{\parallel}} \mathbf{b} \cdot \nabla_{\parallel} \mathbf{u}_{\alpha} + \frac{4}{5} \mathbf{b} \cdot \nabla_{\parallel} \mathbf{h}_{\alpha} + \frac{2}{5} (\nabla \cdot \mathbf{h}_{\alpha}) = \dot{p}_{\alpha_{\parallel}}$$

$$\frac{\partial p_{\alpha_{\perp}}}{\partial t} + \left(\mathbf{u}_{\alpha} \cdot \nabla\right) p_{\alpha_{\perp}} + 2 p_{\alpha_{\perp}} \left(\nabla \cdot \mathbf{u}_{\alpha}\right) - p_{\alpha_{\perp}} \mathbf{b} \cdot \nabla_{\parallel} \mathbf{u}_{\alpha} - \frac{2}{5} \mathbf{b} \cdot \nabla_{\parallel} \mathbf{h}_{\alpha} + \frac{4}{5} \left(\nabla \cdot \mathbf{h}_{\alpha}\right) = \dot{p}_{\alpha_{\perp}}$$

What is Needed in Solar

- * There is only one subsurface solar model at CCMC
 - Anelastic MHD (ANMHD) solves for the evolution of \mathbf{v} and \mathbf{B} together with linearized thermodynamic perturbations (s_1 , p_1 , p_1 , p_1 , p_1 , p_1 in a stratified hydrostatic background (given by $s_0(z)$, $p_0(z)$, $p_0(z)$, $T_0(z)$)
 - Rempel and Manchester flux emergence/sunspot models are not available.
 - No solar dynamo model at CCMC
 - No radiative transfer model is available at CCMC to simulate ionization states and line emissions
- CCMC needs buy-in from the solar physics community
 - Part of the problem is that solar interior funding sources (NASA, NSF AST) do not participate in CCMC activities

What is Needed in Corona Models

- More realistic chromosphere to corona models have been developed but are not yet available at CCMC for runs
 - PSI
 - At lower boundary T=20,000K, $n_e=2\times10^{18}$ m⁻³, B=2G (β≈35) (chromosphere)
 - ★ Heat conduction, radiative energy loss, exponential coronal heating, equation for Alfvén wave energy, wave pressure acceleration and heating
 - Michigan
 - ★ Lower boundary T=20,000K, $n_e=2\times10^{16}$ m⁻³, B=1G (β≈1), outgoing Alfvén wave amplitude 15km/s (chromosphere)
 - ★ Heat conduction, radiative energy loss, separate equations for ± Alfvén wave energy, wave pressure acceleration and heating, Kolmogorov and counter-propagating wave dissipation
- The complexity of physics in these models are comparable to the global magnetosphere models
- Next step:
 - Quantitative predictions of solar wind parameters in the corona and at 1AU
 - Quantitative prediction of white light and EUV/X-ray line intensities and charge states

What is Needed in SEP

- * There are no SEP models at CCMC
 - EMMREM (Earth-Moon-Mars Radiation Environment Model) is listed among the CCMC model suite, but...
 - EMMREM is not available for "Runs on Request"
 - No EMMREM results are in the CCMC public archives
- * There is a need for an SEP model
 - SEP transport along IMF flux tubes
 - SEP acceleration by flares
 - Energetic particle acceleration by CMEs, CIRs and other discontinuities
- Is such a code available?

What is Needed in Magnetosphere

- * Reconnection, reconnection, reconnection...
 - With MMS on the horizon being able to simulate physical reconnection is critical
 - Major issues
 - * Finding reconnection sites
 - * Applying physical reconnection process

 - ₩ Hall MHD
 - Anomalous resistivity
- Drift Physics
 - Radiation belts
 - Ring current
 - Connection between tail and inner magnetosphere
- In my opinion, improving reconnection and drift physics are the highest priorities

What is Needed in M-I Coupling

- Inner boundary conditions are oversimplified
 - Gap region $(1.1 2.5 R_E)$ is missing
 - Ionospheric electrodynamics is in effect electrostatics (potential field)
 - Mass coupling is usually poorly handled
- * A decade ago the MRC tried to model the gap region
 - Extend the thermosphere and ionosphere to 3 R_E
 - Include self-consistent plasmasphere
 - ...but the code never really worked and now the group is out of the global space plasma simulation business
- There is a need to revisit the entire M-I coupling area!

What is Needed in Ionosphere-Atmosphere

- This are tightly interconnected domains with vastly different physics
- What is really needed: a whole atmosphere model extending from the troposphere to 3 R_F, including
 - Non-hydrostatic approximation
 - Gravity wave and other momentum/energy transport in ALL directions
 - Radiation transfer with photochemistry
 - Proper neutral and ion chemistry at all altitudes
 - Ionization sources and losses
 - Plasma dynamics from the D region to the plasmasphere and polar wind
 - GIC generation
- Anyone interested?

Changes in a Decade: The Big Picture (or Science Progresses One Funeral at a Time)

- Most younger scientists consider numerical simulations to be a pillar of space physics
 - Measurements/data analysis
 - Theoretical/conceptual models
 - Numerical simulations
- However, there are influential voices still advocating:
 - Fluid simulations are fundamentally flawed
 - In MHD simulations numerical resistivity dominates over physical resistivity, so no result is believable
 - Most large space physics simulation codes were developed with support from other agencies/programs, and we should keep it that way
 - We should not waste our sparse resources on code development/maintenance

Summary

- CCMC is a great success for the code development community
- The present arrangement is a win-win for the space science community and code providers
- We need a range of code/model improvements to become a third pillar of space science
- There is a need for about \$10M/year stable funding source for large code development/support
- This investment can be justified only if code providers and CCMC listen to the community's needs and work closely with the community
- New paradigm: it is not degrading to be useful for others and provide services to the community

UNIVERSITY of MICHIGAN